

EASEE-gas European Association for the Streamlining of Energy Exchange - gas Common Business Practice				
			Number:	2023-001/01
Subject:	Hydrogen units			
Approved:	23 November 2023			
Summary This CBP def processes co	fines the units to be used in the market ontracting, nomination, balancing, allocation fo			

1

31 About EASEE-gas

32 <u>https://easee-gas.eu/about-easee-gas</u>

33

34 Version List

35

Number/ Version	Approved	Implementation date
(2023-001/01)	2023-11-23	Tbd

36

37 **Reference List**

38

Reference	Document name	Version
CEN/TS	CEN/TS 17977, Gas infrastructure - Quality of gas - Hydrogen	
17977	used in rededicated gas systems	

39

1.1 APPLICATION AREA			
This CBD defines the recomm	and ad units to be used in the market processes		
contracting trading nominat	of defines the recommended units to be used in the market processes		
blended with natural das see	d with natural das, see Note 1) flowing through dedicated bydrogen		
systems.	note 1) nowing through dedicated hydrogen		
Note 1: This CBP is not applic	able to blends of hydrogen and natural gas.		
1.2 HYDROGEN UNITS TO	BE USED IN MARKET PROCESSES		
The proposed units in this CB	P are based on an internal analysis conducted b		
EASEE-gas in which the differ	ent possibilities were ranked. A brief explanation		
the units taken into considera	ation and the aspects on which the ranking is ba		
can be found in the explanato	bry notes section.		
Inlike the units used in natur	al das market processes, the determination of t		
energy content of hydrogen is	s only based on the energy content of the hydro		
molecules present which mea	ins the energy content of all other components is		
not taken into account.			
The gross calorific value of hy	/drogen is calculated at a reference combustion		
condition of 15 °C, a volume reference temperature of 15 °C and a volume			
reference pressure of 1,0132	5 bar.		
Noto 2. Those reference and	litions are used in CEN/TS 17077 "Cas		
infrastructure - Quality of and	HUDIS ALE USED III CEN/IS 1/9//, GdS		
	, myarogen used in rededicated gas systems		
The units that have been agree	eed upon for this CBP are given in the table belo		
Property	Unit		
Transmission capacity	kWh/h (H ₂)		
Energy quantity	kWh (H ₂)		
- · · ·	EUD/(kWb/b)/H)/h		

Note 3: It is noted that in some countries a formal approval is required from the
legal metrology authorities before implementation of the in this CBP proposed
method is allowed.

76

78

77 **1.3 EXPLANATORY NOTES**

79 **1.3.1 INTRODUCTION**

80

81 (Natural) gas is traditionally used as an energy source and all market facilitating

transactions, i.e. contracting, nominating, allocating and balancing are based on

83 energy flow. In the determination of the energy content the contribution of **<u>all</u>**

combustible components is taken into account based on their gross calorific value.

86

Hydrogen is traditionally used as a feedstock, as an energy source and it has the possibility to store "green electricity". Feedstock users are **only** interested in the hydrogen molecules and classify the hydrocarbons and/or inerts present in the hydrogen as **unwanted** components that need to be removed before using the hydrogen.

92

94

93

1.3.2 ENERGY CONTENT OF COMPONENTS TAKEN INTO ACCOUNT

The two options to be considered in the determination of the energy content of hydrogen are:

• The contribution of all combustible components (total share)

• The contribution of only the hydrogen molecules present (hydrogen share)

99

Both options have specific advantages and disadvantages and were ranked on
four properties: Acceptance by end users, future-proof, impact on system
operations and cost allocation.

103

The results of this ranking are presented in the table below.

104 105

Property	Total share	Hydrogen share
end user acceptance	Match between end user measurement (all components) and TSO measurement	Mismatch between end user measurement (all components) and TSO measurement (only hydrogen) but is explainable
Future-proof	In delivery contracts, no incentive for producing hydrogen with higher purity and even a risk for adding additional combustible components (at the production site or even downstream on the network)	In delivery contracts, an incentive for producing hydrogen with higher purity and no risk on adding additional combustible components
Transmission fees	All combustible products are settled (allocation)	Only hydrogen quantities are settled (allocation).
	Transmission fees based on all combustible products (like for natural gas).	Transmission fee only based on hydrogen (Allocating of transmission costs based on the total amount of hydrogen transmitted).
Facilitating certification	The amount of all combustible components are taken into account	Only the amount of hydrogen present in the gas is taken into account

EASEE-gas association loi 1901 Tour Pacific, 11-13 Cours Valmy, 92 977 Paris La Défense Cedex, France www.easee-gas.eu

4

Note 4: Regarding facilitating certification: The traceable certificates will most 106 likely contain only the produced amount of hydrogen. The advantage of only 107

charging hydrogen in the commercial model is that there is a one-to-one 108 relationship between the nominations and the value on the certificate. 109

110

116

118

Preference is given to the option "Hydrogen share" based on the ranking. Main 111 drivers for this preference are: 112

- the correct cost allocation to the end users; 113 •
- the incentive for producers to strive for higher hydrogen purity level; 114
- the avoidance of blending other combustible products into the hydrogen. 115

1.3.3 BASIS USED FOR THE UNIT 117

The three options to be considered as a basis for the unit used for the hydrogen 119 120 are:

- Mass 121 •
- Volume 122 •
- Energy 123 •

124

All three options have specific advantages and disadvantages and were ranked 125 126 on two properties: Acceptance by end users and future-proof.

127

129

135

The results of this ranking are presented in the table below. 128

Basis	End user acceptance	Future proof
Mass (kg)	The market for chemicals mostly uses mass but gas and electricity are traded on energy basis	From the point of view of physical system integration of electricity and gas market, using mass is not desirable.
Energy (kWh)	Hydrogen energy (only consider the hydrogen content) could confuse end users and result in questions and / or measurement complaints. (Risk can be mitigated by information provision)	In the long term, the hydrogen market is expected to be closely integrated with the electricity market.
		The current gas market messages can be used without modifications
Volume (m ³)	Volume units are not relevant for hydrogen customers.	Volumes depend on chosen pressure and temperature conditions
		From the point of view of physical system integration, using flow is not desirable for the future
		++ / no risk

Preference is given to the option "Energy (kWh)" based on the ranking. Main 130 driver for this preference are: 131

- the expected integration of the energy markets, especially the electricity and 132 • hydrogen market;
- 133
- the possibility to use the current market messages (contracting, nomination, 134

balancing and allocation) for (natural) gas without modification;

EASEE-gas association loi 1901

0

- / high risk

Tour Pacific, 11-13 Cours Valmy, 92 977 Paris La Défense Cedex, France www.easee-gas.eu

the experiences gathered by the stake holders and regulatory authorities of
 the gas market.