

The effects of injecting hydrogen (renewable gases)

EASEE-gas GMOM 28 March 2018 - Budapest

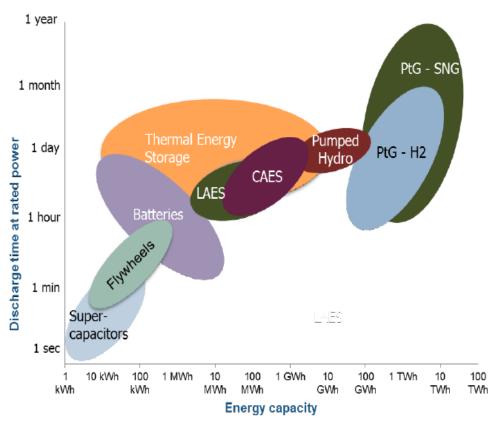
Jos Dehaeseleer

Secretary General

28/03/2018

Storage of surplus of renewable energy

Sharp growing of renewable power generation


- Peak power production generates curtailments
- Renewable power is intermittent

Need for power storage

Different technologies available

 Many of them under development

Hydrogen is an option

Source: World Energy Council, 2016

Allow long term storage and transport of surplus of renewable energy

Hydrogen is an energy carrier

Different utilization options:

- Use in hydrogen application: heat, mobility, raw material, ...
- To transform in another fuel: methane, methanol, liquid fuels
- Injection into the natural gas network

Reasons behind injection of hydrogen in the natural gas grid

Allow to use the large storage and transmission capacity of natural gas infrastructure

The natural gas infrastructures already exist and their capillarity along European territory allows connecting almost any production/utilization point

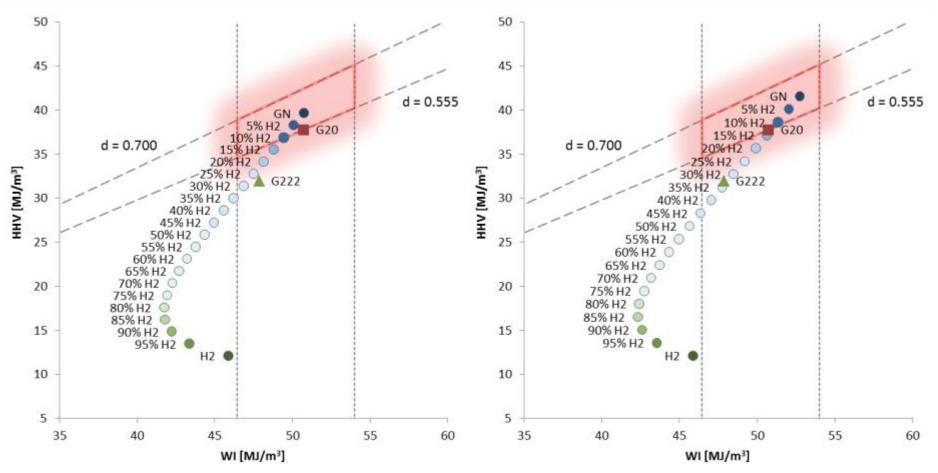
Natural gas infrastructure operators and associations are strongly committed to support the integration of renewable gases in their grids

Contribution to reduce the CO₂ footprint

Hydrogen main combustion properties vs natural gas (pipeline/LNG origin):

	Pipeline NG	LNG	H ₂
Hs (MJ/m ³)	39.67	41.26	12.10
WI (MJ/m ³)	50.73	52.35	45.88
Rel. Density	0.6114	0.6211	0.0696

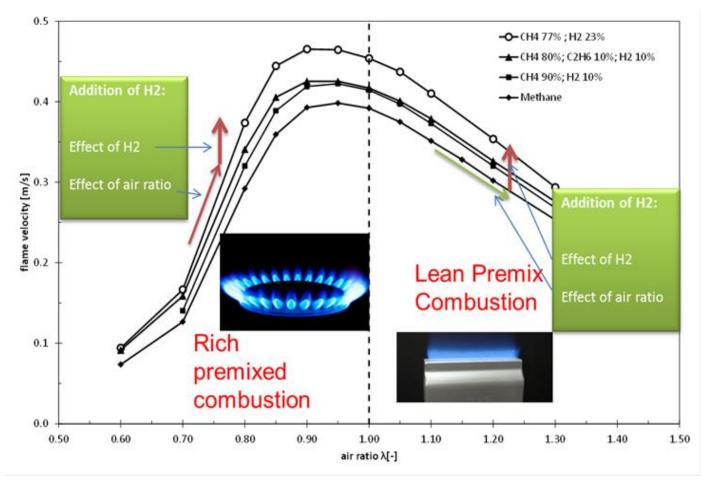
(15°C/15°C conditions)


- Higher combustion velocity
- Higher flame temperature in stoichiometric combustion

Effect of adding hydrogen to natural gas

LNG

Pipeline natural gas



Red area: CBP natural gas specification limits as reference

EASEE-gas GMOM - Budapest

Effect on gas velocity of mixtures

Source: K. Altfeld & D. Pinchbeck (GERG),

Admissible Hydrogen Concentrations in Natural Gas Systems (HIPS The paper), 2013.

Many gas applications are able to handle mixtures of natural gas and hydrogen without significant problems

Research has demonstrate that many residential and commercial appliances can handle up to 30 % hydrogen without safety concerns

Industrial application could handle up to 50 % hydrogen without negative impact if proper measurement and control technologies are applied

Gas turbines and gas engines are probably the most sensitive applications

Manufacturers and researchers are investigating new technologies to address this

Hydrogen reduces Wobbe index and calorific value of natural gas when mixed with it

- Reduction depends on natural gas composition
- Not only WI/GCV is affected

Acceptable concentrations of hydrogen are different today for different end uses

Many consequences of hydrogen admixtures are qualitatively rather similar to gas natural fluctuations

Report MARCOGAZ - UTIL-GQ-17-29 (http://www.marcogaz.be/index.php/gasutilization)

H₂ networks

Leeds project (CCS)

Mixtures NG/H₂

- Note: city gas between $40 60\% H_2$
- Rather stable WI/GCV needed for the appliances
- Depending on the materials/network structure

Synthetic gases & biomethane

- Equivalent to Natural Gas

Acceptable concentrations of hydrogen depending on the local situation

- Adaption of the network management
- Control/measurement

If produced volume renewable gases (mixtures) > average Summer consumption:

- Cut-off (decrease injection)
- Storage (local, via transmission pipelines, UGS...)

Metering

Investigation ongoing (MARCOGAZ/WELMEC/FARECOGAZ/CEN) on the use of conventional meters for the measurement of non conventional gases (including H₂ and H₂ mixtures)

- First conclusions:
 - > No problems expected for < 10% H₂ in NG
 - > 10% H2 : gas characteristics are progressively changed

Depending on the measuring principle investigation needed:

- \rightarrow Recalibration?
- → Modification of the metrological model approvals
- → The construction specifications of the pressurized parts, all gaskets/sealing and some components (sensors...) of the meters will need to be assessed for suitability, safety (tightness, embrittlement) and durability
- → Static meters (US, Thermal mass, ...)
- → Influence of the density, speed of sound, specific heat capacity...

Conversion of m³ in kWh (billing purposes)

Existing document : GI-EM-06-05

http://www.marcogaz.be/index.php/gas-infrastructure2

New MARCOGAZ study started

- describe and compare different methods that could be used to determine the attributed calorific value at each metering point when gases of different qualities and sources are entering at multiple points in the gas network (depending on the percentage of injection)
 - Assign a conventional CV (eventually after treating and/or blending)
 - > Use tracking devices to monitor CV
 - Use of calculation methods
 - > Measure CV at metering points
 - > Examine the effects on the compressibility factor
 - > ...
 - Taking into account the different types of metering points used, residential, commercial, light industrial and industrial

Transmission network

Component	Knowledge is available	Gaps, needs further investigation
Pipeline	Degradation mechanisms	For older pipelines a condition
	Material and construction	evaluation will be required.
	Process condition Effect H2% on crack propagation	Existing defects should be evaluated because they can lead to lower percentages allowable H2.
Welds	Spec's for new to build 100%-H2 pipeline specify a hardness limit of ~250 Vickers (this is conservative in our opinion)	100%-Hydrogen cracking susceptibility at hardness > 250 Vickers (e,g, at 350 Vickers)
		Max allowable hardness for existing pipelines for 100% H2
Compressor	For reciprocating compressor: the gas used is only of limited importance Centrifugal compressors: performance depends on the density of the gas.	Compressor design should be in accordance with the gas composition.
Gas turbines	<1 % hydrogen addition is acceptable. Some new or upgraded types will be able to cope with concentrations up to 15 %	>1% Consequences for individual engines in installed base shall be investigated
Valves	Some parts might be not suitable for H2	Assess degradation non-metallic parts
	Differential pressures Degradation non-metallic parts (e.g. gaskets)	Investigate possible problems at differential pressures
Safety pressure device	No adverse effects expected, some parts might be not suitable for H2	Assess degradation non-metallic parts

Storage (UGS)

INSTALLATION	PHENOMENA	ТО СНЕСК		
Surface facility	Corrosion	Integrity (idem for gas transport grid)		
Compression units	Physical properties of H_2	Efficiency and integrity (idem for gas transport grid)		
Dehydration and desulfurization units	Physical properties of H_2	Efficiency and integrity		
Metering and gas quality monitoring	Physical properties of H_2	For high % H_2 content (idem for gas transport grid)		
Wells	Corrosion of steel, impact on elastomer sealing elements	Well integrity and containment		
Reservoirs/caverns	Containment	Not different than Natural Gas		
Reservoirs/caverns	Physical behaviour (dissolution, fingering)	Not drastically different than for Natural Gas		
Reservoirs	Bio-chemical reaction	Potential reactions specific for each reservoir		
ocument WG-STO-16-08 (D085) http://www.marcogaz.be/index.php/gas-infrastructure2				

EASEE-gas GMOM - Budapest

Safety

Health of workers / end-users

> No known toxicological effects of H_2 on health (Source: SDS of H_2)

Gas detection

> Detectors to be recalibrated, adapted or replaced depending on the % of H_2 and depending of the type of detection system currently in place.

ATEX Directive / zoning of installations

- > Modification of current ATEX zones depending on the % of H_2 .
- > Electrical installations could need adaptations or replacement above 15% of H_2 . (EN60079-10)

Odorisation

> Impact of H_2 on the smell of the mixture to be assessed.

Auto-ignition temperature

> Natural Gas (575...640°C) +/- the same as pure H_2 (560 °C).

Combustion/Flame

Different for H₂

28/03/2018

TECHNICAL ASSOCIATION OF THE EUROPEAN NATURAL GAS INDUSTRY

1

 Π

Minnel

in a

Attition

A STATES

Marin Ma

180

「日本語的

Avenue Palmerston 4 1000 Brussels BELGIUM T:+32 2 237 11 39 www.marcogaz.org